

Advanced CVD Technology for Emerging 2D Materials

<u>Kevin Chung-Che Huang</u>*, Nikolaos Aspiotis, Ghadah A. Alzaidy, Qingsong Cui, Ed Weatherby, Chris Craig, Katrina Morgan, Ioannis Zeimpekis and Daniel W. Hewak

*Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, U.K. *E-mail: cch@orc.soton.ac.uk*

A future manufacturing research hub

Outline:

- > Overview of CVD activities at the ORC
- > CVD for 2D Materials-Graphene
- > CVD for 2D Materials-Transition Metal
 - **Di-chalcogenides**
- > Summary

A future manufacturing research hub

Materials Capability:

Compound Synthesized	Applications
Ge-S, Sb-S, Ge-Sb-S	Optical, Electronics, Nano
Ge-Sb-Te (GST), Ge-Sb	Electronics, PCRAM
Ti-S	Tribology, Battery, Thermoelectric
Sn-S	Transistor, Solar, Semiconductor
Mo-S, Mo-Se	Transistor, Tribology
W-S, W-Se	Transistor, Tribology
Cu-In-Ga-S / Se (CIGS), Cu-Zn-Sn-S (CZTS), Cu-Sb-S	Solar
Ti-O	Transparent conducting oxides, solar, Filtration
Zn-O	Transparent conducting oxides, solar
Sn-O	Transparent conducting oxides, solar
Sb-O/Sb-S, Ge-O/Ge-S, Mo-O/Mo-S	Memristor
Graphene	Solar, Transistor,
BN	Graphene family
Zn-S	Mid-IR
Bi-O-X	Photocatalyst
Bi-S, Bi-Se	Thermoelectric, topological insulator
V-O, V-S, V-Se	Thermochromic, 2D materials
Ta-S, Ta-Se	2D materials
Ga-S, Ga-Se	2D materials
Nb-S, Nb-Se	2D materials

<u>EFUTURE PHOTONICSHub</u></u>

Advancing manufacturing of next-generation light technologies

Mag = 19.90 K X EHT = 20.00.44

Detector = SE1

Date 10 Aug 200

Detector = SE1 Date :27 Mar 2004

Mag = 5.00 K X EHT = 20.00 kV

CVD apparatus for Ge-S and Ge-Sb-S fabrication

Advancing manufacturing of next-generation light technologies

Optical properties of CVDgrown Ge-Sb-S thin films

Advancing manufacturing of next-generation light technologies

Raman spectra of (a) room temperature as-deposited Sn-S thin film and (b) annealed Sn-S thin film at 350 °C.

XRD patterns of (a) room temperature as-deposited Sn-S thin film and (b) annealed Sn-S thin film at 350 °C

<u>EFUTURE PHOTONICS</u>Hub</u>

Advancing manufacturing of next-generation light technologies

SnS₂ crystals grown by APCVD

Raman spectra of SnS₂ thin film

<u>EFUTURE PHOTONICS</u>Hub

Background:

2D materials:

Graphene

BN

Advancing manufacturing of next-generation light technologies

 \succ (Bi,Sb)₂(Se,Te)₃

25 JULY 2013 | VOL 499 | NATURE | 419

Transition Metal Di-chalcogenides (TMDCs) with sizable bandgaps of 1-2 eV.

$$MX_{2}, M = Ti, Zr, Hf (group 4)$$

$$M = V, Nb, Ta (group 5)$$

$$M = Mo, W (group 6)$$

$$M = Sn (group 14)$$

$$X = S, Se, Te (chalcogen)$$

Advancing manufacturing of next-generation light technologies

Raman Shift (cm⁻¹)

CVD-grown monolayer Graphene on Cu/SiO₂/Si substrate

<u>EFUTURE PHOTONICSHub</u></u>

Advancing manufacturing of next-generation light technologies

CVD-grown Graphene transfer

CVD-grown Graphene transferred on SERS template substrate CVD-grown Graphene transferred on flexible PET substrate

Advancing manufacturing of next-generation light technologies

Background:

2D materials:

- Graphene
- > BN

➤ (Bi,Sb)₂(Se,Te)₃

Graphene family	Graphene	hBN 'white graphene'		BCN	Fluorographen	e Graphene oxide
2D chalcogenIdes	MoS ₂ , WS ₂ , MoSe ₂ , WSe ₂ Zr		Semiconducting dichalcogenides:		Metallic dichalcogenides: NbSe ₂ , NbS ₂ , TaS ₂ , TiS ₂ , NiSe ₂ and so on	
			Mo⊺ ZrS₂, Zrt	e_2 , WTe ₂ , Se_2 and so on	Layered semiconductors: GaSe, GaTe, InSe, Bi ₂ Se ₃ and so on	
2D oxides	Micas, BSCCO	MoO ₃ , WO ₃		Perovskite- LaNb ₂ O ₇ , (Ca,Sr	type: N) ₂ Nb ₂ O ₁₀ ,	Hydroxides: li(OH) ₂ , Eu(OH) ₂ and so on
	Layered Cu oxides	TiO_2 , MnO_2 , V_2O_5 , TaO_3 , RuO_2 and so on		Ti_3O_{12} , $Ca_2Ta_2TiC_3O_{12}$	D_{10} and so on	Others
25 JULY 2013 VOL 499 NATURE 419						

Transition Metal Di-chalcogenides (TMDCs) with sizable bandgaps of 1-2 eV.

$$MX_{2}, M = Ti, Zr, Hf (group 4)$$

$$M = V, Nb, Ta (group 5)$$

$$M = Mo, W (group 6)$$

$$M = Sn (group 14)$$

$$X = S, Se, Te (chalcogen)$$

Applications of TMDCs:

- Tribology
- Field-effect Transistors
- Flexible and transparent optoelectronics
- Photovoltaics and Photodetectors
- Memory devices
- > Gas Sensor (e.g. MoS_2 for NO, NO_2 gas)
- Bio-sensor
- > And more to come!

Properties of MoS₂:

- > Sizeable bandgap: 1.2eV (bulk) \rightarrow 1.8eV (single layer)
- Phonon limit mobility (cm² · V⁻¹ · s⁻¹) at RT: ~410 (similar value to other TMDCs)
- ➤ To date, RT mobility of single layer with HfO₂ dielectric ~200 cm² · V⁻¹ · s⁻¹(reduced to ~50 now), 10nm thick MoS₂ thin film transistor device with Sc contact electrodes ~700 cm² · V⁻¹ · s⁻¹
- Mobility of MoS₂ thin films with other reported methods: 0.1-10 cm² · V⁻¹ · s⁻¹

Fabrication of MoS₂:

- Hurrent challenge --> A scalable and
- controllable sample preparation to
- s make large amounts of atomically
- Th thin and uniform TMDC layers! Lorysis of the precursors containing Mo and S
- Vapour phase synthesis/Chemical vapour deposition

<u>EFUTURE PHOTONICS</u>Hub

Advancing manufacturing of next-generation light technologies

CVD apparatus for MoS₂ thin films

CVD-grown MoS₂ on 295nmSiO₂/Si

TEM image of CVD-grown MoS₂ on sapphire

²FUTURE PHOTONICSHub

Advancing manufacturing of next-generation light technologies

X-ray diffraction patterns of APCVD grown MoS₂ thin film on c-plane sapphire substrate with (a) grazing incidence (2°) setup, (b) symmetric Bragg-Brentano geometry setup (c) pole figure measurement of the 002 plane (d) pole figure measurement of the 103 plane.

Advancing manufacturing of next-generation light technologies

Nano Lett., 2011, 11, 5111-5116

UV-VIS-NIR absorbance spectra of APCVD grown MoS₂ thin films on (a) silica substrate (b) c-plane sapphire substrate.

<u>EFUTURE PHOTONICS</u>Hub

Advancing manufacturing of next-generation light technologies

FIG. 3. Phonon modes in-plane E_{2g}^i , E_{1u} , and the out-ofplane phonon mode A_{1g} , for the bulk MoS₂ (analogously for WS₂).

PHYSICAL REVIEW B 84, 155413 (2011)

Raman spectra of APCVD grown MoS_2 thin films on (a) 280nm SiO_2/Si substrate (b) c-plane ZnO substrate (c) c-plane sapphire substrate.

Advancing manufacturing of next-generation light technologies

Photoluminescence spectrum of APCVD grown MoS_2 thin film on c-plane sapphire substrate (zoom in peak A and peak B in the inset figure).

Advancing manufacturing of next-generation light technologies

XPS Analysis of APCVD grown MoS₂ on SiO₂/Si

<u>EFUTURE PHOTONICSHub</u></u>

Advancing manufacturing of next-generation light technologies

Conformal deposition of MoS_2 thin film on under-cut trenches on 1.1µm spin-coated S1813 photoresist on 200 nm SiO₂/Si substrate

Wafer-scale CVD process for MoS₂

CVD-grown MoS₂ on 4" 300nm/Si wafer

CVD-grown MoS₂ on 4" quartz wafer

MoS₂ Field-Effect Transistor for Next-Generation Label-Free Biosensors

Wafer-scale Bio-sensors

Dr. Kai Sun

Advancing manufacturing of next-generation light technologies

Characterizations of CVD-grown MoS₂

Advancing manufacturing of next-generation light technologies

Characterizations of CVD-grown WS₂

Homogeneous transfer of TMDC's

Bare Si/SiO₂ substrate

MoS₂ transferred on Si/SiO₂ substrate

MoS₂ - Si/SiO₂ optical contrast

<u>EFUTURE PHOTONICS</u>Hub

Advancing manufacturing of next-generation light technologies

(a) CVD epitaxially grown MoS_2 thin thin on c-plane sapphire (0001) substrate (b) SEM image of CVD grown graphene/ MoS_2 flakes heterostructures (c) Raman spectrum of CVD grown graphene/ MoS_2 flakes heterostructures thin film on cplane sapphire (0001) substrate (d) photo-luminescence (PL) spectrum of CVD grown graphene/ MoS_2 flakes heterostructures thin film on c-plane sapphire (0001) substrate.

Advancing manufacturing of next-generation light technologies

Wavelength (nm)

Advancing manufacturing of next-generation light technologies

Advancing manufacturing of next-generation light technologies

Summary:

- > A wide range of chalcogenide and 2D materials have been developed by the CVD techniques for emerging applications.
- Wafer scale 2D materials such as graphene, MoS₂, and WS₂ thin films have been successfully fabricated by CVD process which is scalable and can be easily incorporated with conventional lithography.
- Large area 2D materials, such as graphene, MoS₂, and WS₂ thin films transfer technique has been developed with these materials supply to collaborators worldwide.
- Graphene/MoS₂ flakes heterostructures have been developed with the transfer technique.
- CVD processes for monolayer MoS₂ and WS₂ single crystals and MoS₂ / WS₂ heterostructures have been developed.
- > Commercialization of 2D materials is on the way.

Collaborators:

Country	Institution	Contacts	Materials
Singapore	Nanyang Technological University	Prof. ZeXiang Shen, Prof. Qing Zhang, Prof. Qijie Wang, Prof. ZhiHeng Loh	MoS2, WS2
Singapore	SUTD/MIT	Prof. Rob Simpson	MoS2, WS2
Hong Kong	Hong Kong Polytechnic University	Dr. Peter Tsang	MoS2, WS2
Taiwan	National Chiao Tung University	Prof. Tsung Sheng Kao, Prof. Hao-chung Kuo	MoS2, WS2
China	Beijing Jiaotong University	Prof. Shuqin Lou	2D materials
China	Shanghai Jiaotong University	Prof. Lina Chi	TiO2
Greece	National Technical University of Athens	Prof. Ioanna Zergioti (with RWE)	2D materials
USA	MIT/Delaware	Prof. Jue Jun Hu	Graphene, Ge-Sb-S
Japan/UK	JAIST/ECS	Prof. Hiroshi Mizuta	Graphene
UK	University of Bristol	Prof. John Rarity, Dr. Daniel Ho	GeSbS, SnS, ZnSe, WS2, MoS2
UK/Brazil	University of Nottingham, Universidade Federal de São Carlos (UFSCAR), Instituto de Física - Universidade de Brasília	Prof Mohamed Henini, Prof Yara Galvão Gobato, Prof Jorlandio Francisco Felix	MoS2, WS2
UK	UoS, Engineering and the Environment	Dr. Zheng Jiang, Dr. Shuncai Wang, Dr. John Walker, Dr. Monica Ratoi	Bi-O-X, TiO2, SnS, MoS2, WS2
UK	UoS, Physics	Prof. David Smith, Dr. Christos Grivas, Prof. Pavlos Lagoudakis	WS2, graphene, MoS2
UK	UoS, ECS	Prof. Harold Chong, Dr. Yoshishige Tsuchiya, Prof. Shinichi Saito, Prof. Themis Prodromakis, Prof. Hywel Morgan	MoS2, graphene, WS2
UK	UoS, ORC	Dr. Bill Brocklesby, Dr Goran Mashanovich, Prof. Anna Peacock, Dr. Pier Sazio, Dr. Sakellaris Mailis, Dr. Nikitas Papasimakis, Prof. Jayanta Sahu, Prof. Rob Easonetc	Graphene, MoS2, Ge-Sb-S, WS2, 2D materials
UK	Industrials	Oxford Instruments, Plastic logic, Seagate, Artiman, Merck	MoS2, 2D materials

Grants:

	Grants	Valve (£)
1	EP/H02607X/1, EPSRC Centre for Innovative Manufacturing in Photonics (ORC)	£5,125,642
2	EP/M008487/1, Chalcogenide Photonic Technologies (Bristol/ORC)	£594,605
3	EP/N510063/1, Nanomaterials for Smart Data Storage (Seagate/Ilika/ORC)	£211,227
4	EP/N00762X/1, National Hub in High Value Photonic Manufacturing (Shefield, ORC)	£10,220,725
5	EP/M015173/1, Wearable and flexible technologies enabled by advanced thin-film manufacture and metrology (Oxford, Exeter, ORC)	£2,476,881
6	EP/M015130/1, Manufacturing and Application of Next Generation Chalcogenides	£2,508,176
7	EP/N020278/1, Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides	£261,632
	Total	£21,398,888