

Mid Infra-red Devices Opportunities and Challenges

Professor Jon Heffernan University of Sheffield

A future manufacturing research hub

The

University Of Sheffield.

EFUTURE PHOTONICSHub

Introduction Advancing manufacturing of next-generation light technologies

- Photonics is an underpinning ٠ discipline
- Huge value across a broad range of ٠ industry sectors
- Challenge is the integration of many ٠ technologies into low-cost, high value manufacturing processes
- In this session we focus on Mid ٠ Infra-red Photonics as a strongly emerging opportunity and a key capability within the HUB

Grand Challenge: Integration

Developing new low-cost, efficient manufacturing processes to integrate technology platforms and to enable new devices and components including lasers, sensors, new light sources, modulators, transceivers and photonics subsystems etc.

FUTURE PHOTONICSHub Advancing manufacturing of next-generation light technologies Today's Presentations

MIR Devices (Professor Jon Heffernan, Sheffield)

Introduction to laser, LED, detector capabilities in Sheffield

Silicon Photonics Platforms (Professor Goran Mashanovich, Southampton)

- Introduction to the Silicon and Germanium based integrated Photonics platforms in Southampton

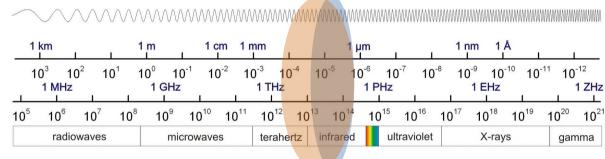
Chalcogenide Photonics (Professor Dan Hewak, Southampton)

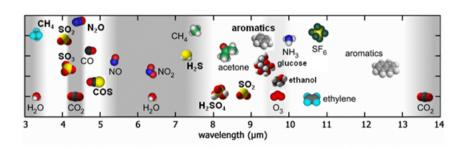
- Introduction to MIR fibre and optoelectronic technologies at Southampton

Optical Coherence Tomography (Professor Steve Matcher, Sheffield)

- Introduction to OCT technologies and illustration of integration needs and opportunities

MIR European Foundry (Iwan Davies, IQE Europe)


- Introduction to a new European foundry and scale-up opportunities out of Hub work



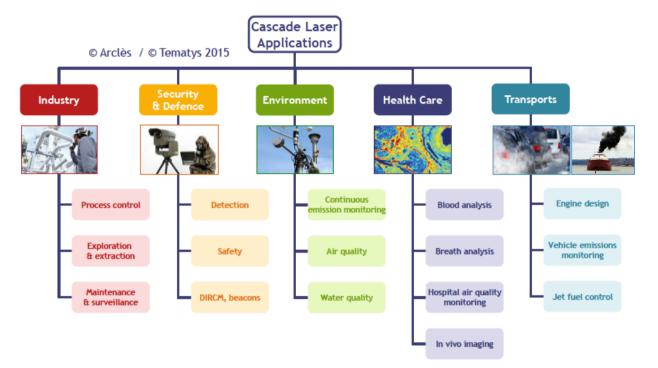
EFUTURE PHOTONICSHub Advancing manufacturing of next-generation light technologies Why Mid Infra Red?

Much of the value in MIR Photonics is in accessing optical activity of environmental substances and materials and low loss transmission in free space

Detection limits using diode laser spectroscopy

Molecule	ppb mid-IR (λ)	ppb Near-IR (λ)
H2O	2.0 5.94 μm	60 1.39 µm
CO2	0.13 4.23 µm	3000 1.96 µm
CO	0.75 4.6 µm	500 2.33 μm
NO	5.8 5.25 μm	60000 1.8 µm
CH4	1.7 3.26 μm	600 1.65 μm
HCl	0.83 3.4 µm	150 1.79 µm
H2OC	8.4 3.55 μm	50000 1.93 µm
NH3	0.8 10.3 μm	800 1.5 μm

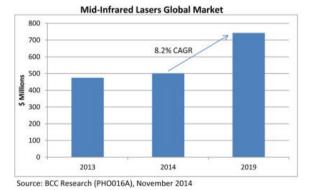
A future manufacturing research hub

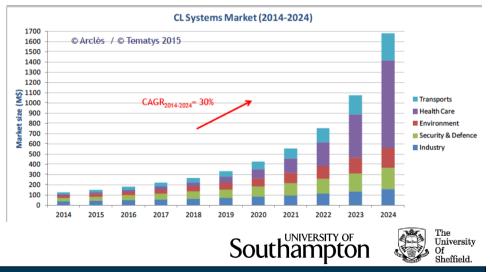

The

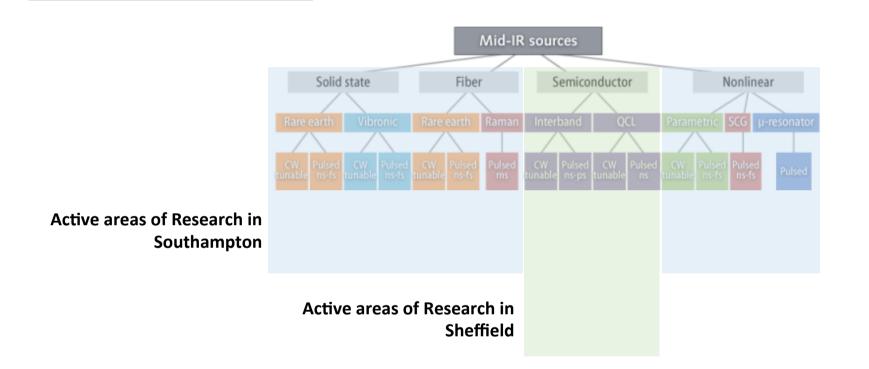
University Of Sheffield.

Diverse application space with technological, societal and regulatory drivers for innovation

Applications



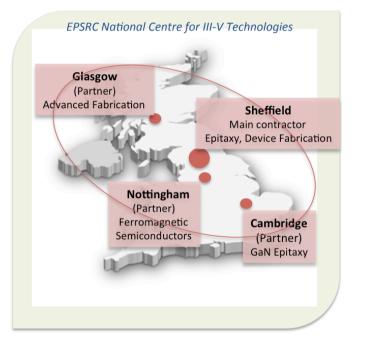

<u>EFUTURE PHOTONICS</u>Hub Advancing manufacturing of next-generation light technologies Market Opportunities


Significant growth in Mid-IR laser markets as new technology innovations have emerged and manufacturability of technology such as QCLs has become established. CAGR 8%

 Larger applications markets in sensing, monitoring, countermeasures and healthcare, CAGR 30%

EFUTURE PHOTONICSHub Advancing manufacturing of next-generation light technologies EPSRC Engineering and Physical Sciences Research Council

MIR Devices



울FUTURE PHOTONICSHub

III-V Semiconductor Capabilities in the Hub

Longstanding experience in the growth of III-V semiconductors in University of Sheffield Material supply to the Hub through the EPSRC National Centre for III-V Technologies (since 1979)

Extensive Epitaxy and device processing capability including:

- 9 MBE and MOVPE reactors
- High spec device fabrication cleanrooms
- Full suite of materials and device characterization
- Working with many companies as well as academia

- ISO9001 certified

All major III-V materials and devices supplied covering spectral range from UV to THz

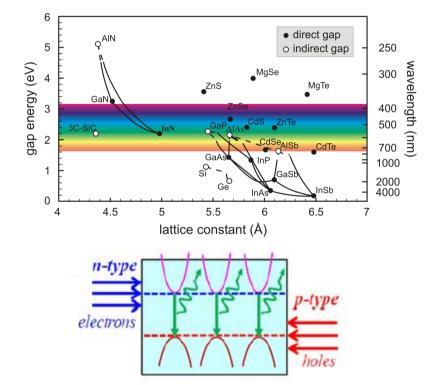
Epitaxy

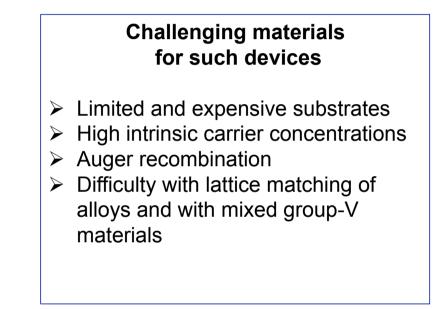
- Arsenides (MBE and MOVPE)
- Phosphides (MBE and MOVPE)
- Antimonides (MBE)
- Dilute Nitrides (MBE)
- Nitrides (MOVPE, MBE)
- Novel materials (Bismides, ferromagnetics...)
- Quantum Dots and Nanowires
- 2D materials and Van der Waals epitaxy (MBE)

DEVICES

- Edge Emitting Lasers
- VCSELs
- VECSELs, SESAMs
- Quantum Cascade Lasers
- LEDs, SLEDs
- Multijunction Solar Cells
- Detectors (including SPADs)
- Modulators

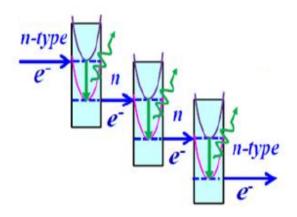
• Single Photon emitters


- Photonic crystal devices
- Microcavities
- RTDs
- FETs, HEMTs and power electronics
- Nanostructures
- Magnetic heterostructures


EFUTURE PHOTONICSHub

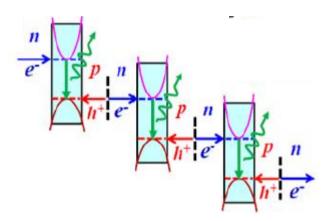
MIR Devices

Conventional interband emitters such as lasers and LEDs (and detectors in reverse)


A future manufacturing research hub

The University Of Sheffield.

Solution: Cascade Structures



EFUTURE PHOTONICS Hub

Advancing manufacturing of next-generation light technologies

Intersubband Cascade structures

Type II Interband Cascade structures

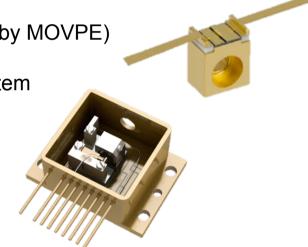
Quantum Cascade Lasers

- + Emission determined by quantum confined energy levels in Quantum wells => Not dependent on bandgaps (not exactly true)
- + Emission from ~3micron to THz region (with appropriate design)

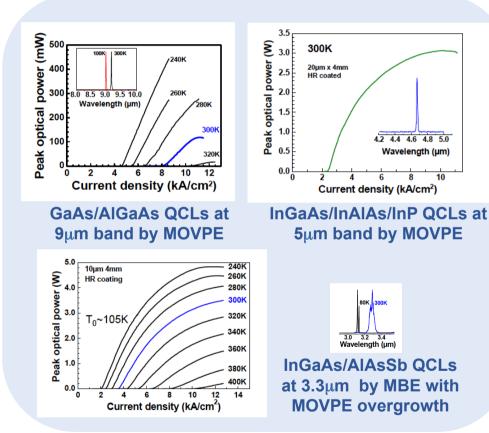
EFUTURE PHOTONICSHub

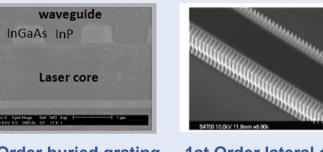
Advancing manufacturing of next-generation light technologies

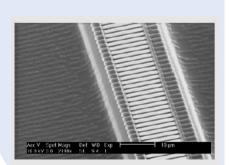
- + Broad gain profile allowing for large tuning range and very narrow linewidths in single devices
- Very challenging epitaxy (thousands of layers)
- Short and long wavelength regimes are still difficult with low temperature operation

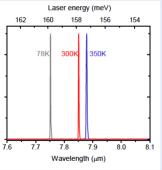

Sheffield a pioneer in Quantum Cascade Lasers

- \succ QCLs by MBE and MOVPE (first group in world to demonstrate by MOVPE)
- GaAs/AIGaAs system, InGaAs/InP system, InGaAs/InGaSb system
- Wavelengths from 3.1 micron to 12 micron \geq
- Watt-class outputs \geq
- DFB structures for single mode narrow linewidth \geq
- Our lasers have been incorporated in a variety of systems including into commercial systems for gas \geq and environmental sensing A future manufacturing research hub




Quantum Cascade Lasers


[₽]FUTURE PHOTONICSHub


Advancing manufacturing of next-generation light technologies

3rd Order buried grating

1st Order lateral grating

DFB laser Operation

New Directions and Manufacturability

Remaining key challenges and opportunities at device level include:

EFUTURE PHOTONICSHub

- Mass manufacture of QCLs is still to be achieved. Partially market limited but very challenging epitaxy
- Further progress in wall-plug efficiency, high power, low threshold, tunable and mode-locked lasers still required
- > More work on thermal management and packaging technologies required

EFUTURE PHOTONICSHub Advancing manufacturing of next-generation light technologies New Directions within the HUB

Hub will address major new device innovation and significant advances in applications-driven integration for manufacturing

- > We will be developing improved QCLs
- We will be developing Interband Cascade lasers for improved device performance and manufacturability
- We will develop Sb-based MOVPE for manufacturing of short wavelength QCL and ICLs
- LEDs and detectors also based on these approaches are possible

Other III-V Technologies available within the HUB

Detectors

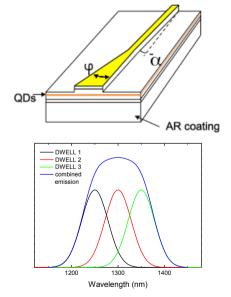
 Critical component in high sensitivity applications. MIR is particularly challenging

High quality Epitaxy

EFUTURE PHOTONICSHub

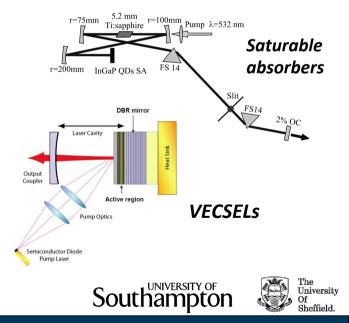
Advancing manufacturing of next-generation light technologies

- Broad materials coverage for full wavelength range
- Detector design and innovation



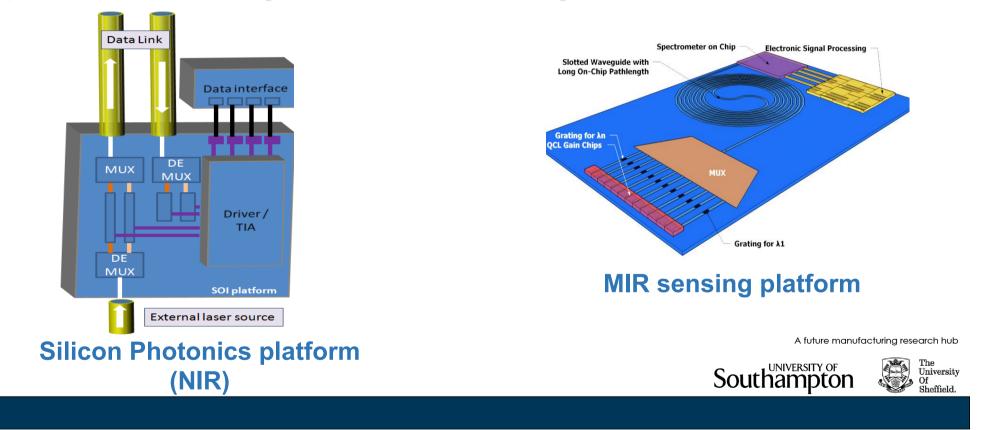
SLEDs

Broad spectral emission


Beyond Sources

- Less critical epitaxy than lasers
- Limited power applications

Solid-state Hybrids


- Semiconductor component in solid-state laser systems
- Variety of challenges at MIR

<u>EFUTURE PHOTONICSHub</u> Advancing manufacturing of next-generation light technologies MIR-Sensing Platform

Hub will address major new device innovation and significant advances in applications-driven integration for manufacturing

World class III-V Semiconductor Epitaxy and device fabrication facilities available through the Hub:

- Innovation in semiconductor devices in the Mid-infra red
- > Developing integrated applications-led platforms
- Working with industry and academic partners to develop high value manufacturing processes

EFUTURE PHOTONICSHub Advancing manufacturing of next-generation light technologies Today's Presentations

MIR Devices (Professor Jon Heffernan, Sheffield)

- Introduction to laser, LED, detector capabilities in Sheffield

Silicon Photonics Platforms (Professor Goran Mashanovich, Southampton)

- Introduction to the Silicon and Germanium based integrated Photonics platforms in Southampton

Chalcogenide Photonics (Professor Dan Hewak, Southampton)

- Introduction to MIR fibre and optoelectronic technologies at Southampton

Optical Coherence Tomography (Professor Steve Matcher, Sheffield)

- Introduction to OCT technologies and illustration of integration needs and opportunities

Thank you for your attention

