

Silicon Photonics Integration: A story of money and power

Peter Wilson, Ke Li, Dave Thomson, Fred Gardes

We live in a communications world

- Internet
- Networks
- Wireless
- Sensors
- Global
- Social Media
- Instant

What is the vision for an integrated Silicon Photonics World?

Low Cost

Simple Integration with CMOS

Low Power

Standard Platforms

and Computer Science

But, there's a problem....

An incompatible technology division?

Photonics Fast High Power Novel Materials Electronics Low Power Mobile Cheap

How can we address this challenge?

What options do we have? What has been done? What resources do we have?

How do we quantify the choices?

Engineering and Physical Sciences

Research Council

Speed of Operation (Gb/s) Power consumption (W)

But what about the cost?

We need to consider the costs...

As a research team, given by the limited research resource, what is the fabrication cost *per bit*?

Dollars/bit (\$/bit)

Example IC Fabrication Costs...

IBM 180nm SiGe (40) IBM 130nm SiGe (40) IBM 130nm CMOS (40)

...and TSMC 65nm is \$21000 for 100 samples

Choice for electronics devices depends on budget....

Unlimited budget and no power issues => SiGe "No" budget and limited power => CMOS

But we need to think about more than just a single demonstrator.....

Additional benefit of CMOS?

- Reduced costs open the possibility of multiple runs and a research platform for different modulation formats.
- SiGe/GaAs **CMOS** Operation Operation speed speed **Multiple runs** Different modulation formats DSP Fabrication Power Fabrication Power

consumption

consumption

cost

cost

Strategy for practical success...

- Use CMOS for electronics
 - Low cost, low power
- Custom Silicon for Photonics
 - High performance, made in Southampton
- Hybrid Integration using bonding
 - Optimal platforms, rapid prototyping of separate technologies, simple integration

1st Gen driver integrated with modulator based on 0.35um CMOS

1Gbit/s

Achievement in 2012

2nd Gen driver integrated with modulator based on 0.13um CMOS

Achievement in 2013

A complete transceiver link energting at 10Ch/c

Comparison of cost with commercial product

Intel achieve similar performance at year 2011. Were two years behind Intel. BUT, the cost?

Product (MZM driver)	Speed	Process	Cost of each 10Gb/s
TriQuint TGA-4954	10Gb/s	GaAs	£119 ¹
Analog Devices ADN2526ACPZ	11.3Gb/s	SiGe	£24.19 ¹
SOTON ECS 2013	12.5Gb/s	CMOS	£46.8

Our cost are based on small volume tape out price, and are comparable with commercial products (remarkable!).

Furthermore, we have created a useful research platform!

[1] price obtained from mouser electronic (www.mouser.com)

17

Advanced modulation format realized in 2014

18

Southampton

Future work

- Flip Chip Bonding
- Deep sub micron CMOS (65nm and smaller)
- Much faster channels
- Lower Power.
- Better integration with Photonics
- Multiple Channels.
- Coding schemes in hardware and software

